3. It is not on the table, but as it is an alcohol it is probably somewhere near that of ethanol (pKa = 16). In the carboxylic acid, the negative charge is distributed between two oxygens by resonance. MathJax reference. This means that the B-H has to have a higher pKa value (weaker acid) than phenol. HI, with a pK a of about -9, is one the strongest acids known. Now, lets learn how to choose a suitable acid for protonating a given compound. This means the most acidic proton in this molecule is the on the terminal alkyne (sp C-H). In class we learned about 6 factors that effect acidity: 1) delocalization; 2) element (electronegativity and polarizability); 3) hybridization; 4) induction; 5) aromaticity; 6) electrostatic. How to combine independent probability distributions? They are slightly more acidic than alkanes because N is more electronegative than C and an N-H bond is weaker than a C-H bond. What is Wario dropping at the end of Super Mario Land 2 and why? Generic Doubly-Linked-Lists C implementation. Not saying it's better or worse but it's also useful to know an approximate pKa for amide NH and amine NH compared to the various CH protons there (the 1,3-dicarbonyl and the carbonyl). The more stable a substance is, the less reactive it is, and viceversa. However, the terms "strong" and "weak" are really relative. The most convenient method for ranking acidic groups is to already know their characteristic pKa values. Notice in this example that we need to evaluate the potential acidity at four different locations on the molecule. Chemistry Stack Exchange is a question and answer site for scientists, academics, teachers, and students in the field of chemistry. Hydrogens directly attached to very electronegative atoms such as oxygen, sulphur, and the halogens carry a substantial degree of acidity. Ka for acetic acid = 10-pKa = 1.74 x 10-5. Going to a farther extreme, a compound from which it is very, very difficult to remove a proton is not considered to be an acid at all. Which conjugate base is more stable? In effect, the chlorine atoms are helping to further spread out the electron density of the conjugate base, which as we know has a stabilizing effect. Nitric acid in water has a pKa of -1.3 and hydrobromic acid has a pKa of -9.0. When a gnoll vampire assumes its hyena form, do its HP change? Remember,the weaker the acid, the stronger the conjugate base: As an example: Can sodium amide deprotonate the following alkyne? Chemists use the term delocalization of charge to describe this situation. The two protons on the carbon next to the carbonyl are slightly acidic, with pKa values around 19-20 according to the table. To subscribe to this RSS feed, copy and paste this URL into your RSS reader. - Acid-base reactions are also known as proton transfer reactions. The stronger the conjugate acid, the weaker the conjugate base. The use of pKa values allows us to express the acidity of common compounds and functional groups on a numerical scale of about 10 (very strong acid) to 50 (not acidic at all). I know the concepts behind all, but I don't get how to weigh them relative to each other when trying to determine the acidity of one proton in comparison to another, and how this all factors into pKa. These are the groups that you are most likely to see acting as acids or bases in biological organic reactions. However, I am not sure. For example, if you know that ROH, RCO2H, and RSO3H are common acidic functional groups, you'll have no trouble finding acidic groups in the following molecule (the correct groups are marked in red). It comes from the molecular orbital diagrams. { "5.1:_Br\u00f8nsted\u2013Lowry_Acids_and_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.2:_Acid_Strength_and_pKa" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.3:_Predicting_the_Outcome_of_Acid\u2013Base_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.4:_Factors_That_Determine_Acid_Strength" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.5:_Common_Acids_and_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.6:_Lewis_Acids_and_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_01:_Structure_and_Bonding" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_02:_Acids_and_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_02:_Introduction_to_Organic_Molecules_and_Functional_Groups" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_04:_Alkanes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_05:_Stereochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_06:_Understanding_Organic_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_07:_Alkyl_Halides_and_Nucleophilic_Substitution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_08:_Alkyl_Halides_and_Elimination_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_09:_Alcohols_Ethers_and_Epoxides" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_10:_Alkenes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_11:_Alkynes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_12:_Oxidation_and_Reduction" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_13:_Benzene_and_Aromatic_Compounds" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_20:_Introduction_to_Carbonyl_Chemistry_Organometallic_Reagents_Oxidation_and_Reduction" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_21:_Aldehydes_and_KetonesNucleophilic_Addition" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "showtoc:no", "license:ccbyncsa", "authorname:lmorsch", "licenseversion:40" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FCourses%2FUniversity_of_Illinois_Springfield%2FUIS%253A_CHE_267_-_Organic_Chemistry_I_(Morsch)%2FChapters%2FChapter_02%253A_Acids_and_Bases%2F5.2%253A_Acid_Strength_and_pKa, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), 5.3: Predicting the Outcome of AcidBase Reactions, arrange a series of acids in order of increasing or decreasing strength, given their, arrange a series of bases in order of increasing or decreasing strength, given the, Write down an expression for the acidity constant of acetic acid, CH, From your answers to the questions above, determine whether acetic acid or benzoic acid is stronger, \(K_a = \dfrac{[CH_3CO_2^-][H^+]}{[CH_3CO_2H]} \) or \(K_a = \dfrac{[CH_3CO_2^-][H_3O^+]}{[CH_3CO_2H]}\), \(pK_a =\log_{10} K_a = \log_{10} 6.5 \times 10^{5} =(4.19) =4.19\), Benzoic acid is stronger than acetic acid. It isn't; the allyl anion is less basic. I ask why is it not aromatic? D. One of the resonance structures for the enolate places the negative charge on the more electronegative oxygen. The atomic radius of iodine is approximately twice that of fluorine, so in an iodine ion, the negative charge is spread out over a significantly larger volume: This illustrates a fundamental concept in organic chemistry that is important enough to put in red: Electrostatic charges, whether positive or negative, are more stable when they are spread out than when they are confined to one atom. Oxygen is more electronegative than nitrogen, so it can stabilize the negative charge better. How many "verys" are there in a pKa unit? Water does not give up a proton very easily; it has a pKa of 15.7. If you know these values for all of the acidic groups in your molecule, then the group with the lowest pKa contains the most acidic H. Case closed. Given these principles, we expect the acidity of these carboxylic acids to follow this trend. Now, it is time to think about how the structure of different organic groups contributes to their relative acidity or basicity, even when we are talking about the same element acting as the proton donor/acceptor. What this means, you may recall, is that the negative charge on the acetate ion is not located on one oxygen or the other: rather it is shared between the two.